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Abstract

A well known prediction of Einstein's general theory of relativity states that two ideal clocks

that move with a relative velocity, and are submitted to different gravitational fields will, in general,

be observed to run at different rates. Similarly the rate of a clock with respect to the coordinate

time of some spacetime reference system is dependent on the velocity of the clock in that reference

system and on the gravitational fields it is submitted to. For the syntonization of clocks and the

realization of coordinate times (like TAD this rate shift has to be taken into account at an accuracy
level which should be below the frequency stability of the clocks in question, i.e. all terms that

are larger than the instability of the clocks should be corrected for. We present a theory for the

calculation of the relativistic rate shift for clocks in the vicinity of the Earth, including all terms

larger than one part in 10 is. This, together with previous work on clock synchronization (Petit &

Wolf 1993, 1994), amounts to a complete relativistic theory for the realization of coordinate time

scales at picosecond synchronization and 10 1_ syntonization accuracy, which should be su_icient

to accomodate future developments in time transfer and clock technology.

1. Introduction

When using the concept of syntonization in a relativistic context certain ambiguities might

appear which can lead to confusion and mistmderstanding. It is therefore essential to first

clarify the different meanings of the expression as used in time metrology within a relativistic

framework.

Consider first the case where the relative rate of two distant clocks A and B is measured

directly i.e. the frequencies of two signals coming from A and B respectively are compared by

some observer 0. Taking the case where the observer is in the immediate vicinity of B and at

rest with respect to B the measured relative rate is predicted as;

(d'rA/dTB) -- 0 = 1 + [(U/_ - UA) -v2/2]/c 2 + O(c -a) (1)

in the first post-Newtonian approximation where (drA/dTB)O is the relative rate of the two

clocks as observed by 0, U is the total gravitational potential at the location of the clock, v is

381



the relative speed of the two clocks and c is the speed of light in vacuum. Note that this result

is completely dependent on the observer 0. If, for example, 0 was in the immediate vicinity

of A and at rest with respect to A the term in ,v_ would change sign. Note also that (1)

is independent of any reference frame or coordinate system. It is a coordinate independent,

measurable quantity.

For the realization of coordinate time scales (like TAI) it is necessary to syntonize clocks with

respect to the coordinate time in question, i.e. to determine the rate of a clock A with

respect to an ideal coordinate time of some space-time reference frame. For example, using

a geocentric non-rotating frame with TCG as coordinate time (as defined by the IAU /(1991))

wc obtain, again in the first post-Newtonian approximation;

dTA/dT(.'(; = 1 - [/,;(w) + v2/2]/c 2 + O(c -4) (2)

where (c7'(:(;, wk) are coordinates in the geocentric frame with w representing the triplet wk.

The potential at the position of the clock U(w) is the sum of the Earth's potential and tidal

potentials of external bodies, and v = ((dwi/dTCG)(dwi/dTCG)) U2 is the coordinate speed of

the clock in the geocentric, non-rotating frame. Note that this rate depends entirely on the

chosen reference frame. It is a coordinate quantity which cannot be obtained directly from

measurement, but must be calculated theoretically using the definition of the reference frame

in question with the appropriate metric equation.

When using repeated time transfers employing the convention of coordinate synchronization

(Allan & Ashby 1986, Petit & Wolf 1994) for the determination of the relative rate of two

clocks A and B, the resulting rate predicted by theory is simply:

dTA/dTB = (dTAIdT('(;)(dT( '(;I dTB)(3) (:_)

with dT-/dTC(; given in (2). This is a combination of coordinate dependent quantities and not

to be confi,sed with the measurable quantity expressed in (1). The former is entirely dependent

on the chosen reference frame and the convention of synchronization while the latter is specific

to the measuring observer 0. They will, in general, differ due to, essentially, the difference in

the v'_/c '2 terms. In sections 2 and 3 we will consider the syntonization of clocks with respect to

coordinate times TCG (Geocentric Coordinate Time) and TT (Terrestial Time, the ideal form

of TAI) as defined by the IAU (1991) together with the transformation relating the two. The

aim is to provide expressions in the form of (2) including all terms whose magnitudes exceed

current and near future clock stabilities which are estimated to reach parts in 10 TM, as shown

in Figure I (Maleki 1993).

When determining the relative rate of two distant clocks, one might be interested in time

varying effects only (i.e. effects that influence the observed frequency stability), which, as will

be shown, can be calculated at higher accuracies than constant frequency shifts. They are

discussed briefly in section 5.
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2. Syntonization with respect to TCG

Using the metric given in resolution A4 of the IAU (1991) the relation between the proper

time of a clock T and TCG can be expressed a:

aT�alTO'C;: 1 - [U(w) + Cr(xE + w) - Cr(xE) - t-',k(xe),L,k + ,?/2 + qk]/(: 2 + O(c -4)

where coordinates in the barycentric frame are represented by (cT(,'B,x k) with x denoting

the triplet z k and the subscript E referring to the Earth's center of mass. Ue(w) and ('(x)

are the Newtonian gravitational potentials of the Earth and of external masses respectively,

v = ((dwi/dT(,'(;)(d,//dT('(;))½, the coordinate speed of the clock in the geocentric, non-

rotating frame and Qk is the correction for the non-geodesic barycentric motion of the Earth.

We find that in the vicinity of the Earth the term in (_) and terms of order (;-4 (given explicitly

in Brumberg & Kopejkin 1990 and Kopejkin 1988) amount to a few parts in 10" or less. This

implies that the specification of coordinate conditions (harmonic, standard post-Newtonian

etc .... ) and the state of rotation of the frame (kinematically or dynamically non-rotating) is

not significant for syntonization at the 1()-_8 accuracy level.

All effects that need to be taken into account for the calculation of the remaining terms are

listed in tables la and lb, together with orders of magnitude and present day uncertainties of
the associated corrections.

Syntonization with respect to TCG of Earth-bound clocks is limited at the 10 -17 accuracy level

by uncertainties in the determination of the potential of the Earth at the location of the clock.

Hence only effects whose influence on (4) is larger than this limit tire considered in Table la.

The gravitational potential of the Earth, Ue(w) can be expressed as a series expansion in

spherical harmonics. However, owing to mass irregularities such a series must be considered

divergent at the surface of the Earth (Moritz 1961). Nonetheless, due to the predominantly

ellipsoidal shape of the Earth, one can use the first two terms of this series expansion as a first

approximation (Allan & Ashby 1986, CCIR 1990, Kiioner 1992). Thus:

/;E(W) = G';_II2(_ J2(1 -3('os 2 0) /2_/a . . .

where (; is the Newtonian gravitational constant, A,'IE is the mass of the Earth, _'1, and 3 2

(.12 = 1.0826 × 10 -3 ) are the equatorial radius and the quadrupole moment coefficient of the

Earth respectively and 0 is the geocentric colatitude of the point of interest.

Substituting (5) into the second term of (4) gives terms of the order of 7 x 10 -m and _, x 10 -13

respectively for points on the surface of the Earth.

The surface obtained when setting Uz(w) + (cowsin 0) 2 = W0 in (5), with _ representing the

angular velocity of rotation of the Earth and W0 the gravitational + centrifugal potential on

the geoid, differs from the ellipsoid of the Earth model by less than 10 m. Hence an estimate

of the accuracy of (5) can bc obtained by considering the maximal difference between the
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geoid and the referenceellipsoidwhichcanamountto .-_ 100 m (Vanicek & Krakiwsky 1986).

Therefore expression (5) for the Earth's gravitational potential should not be t, sed if accuracies

better than one part in 10 TM are reqt, ired.

On the coast the mean sea level can be determined using a tidal gauge. This level differs

from the geoid by what is known as Sea Surface Topology (SST) which can amount to +0.7

m (Torge 1989). The SST can be determined with an accuracy of 0.1 m (Torge 1989) using

oceanographic methods and satellite altimetry which induces an uncertainty of 1 × 10 -17 in

(4). The uncertainty in the knowledge of the potential on the geoid W0, which is of the

order of +lm2/s 2 (Bursa 1992, 1993), contributes another part in 1017. The gravitational and

centrifi,gal potential difference between mean sea level and an arbitrary point far from the

coast can be obtained by geometrical leveling with simt, ltaneous gravimetric meast, rements.

The accumulated uncertainty when using modern leveling techniques and gravimetry is below

0.5 mm/_ (Kasser 1989) and does therefore not exceed a few centimeters even over large

distances. In many countries leveling networks have been established at accuracies of 1-2

mm/_ for primary points, the use of which would again induce errors at the centimetric

level.

Therefore the constant part of the total potential at any point on the Earth's surface can be

determined with an accuracy better than 2.5 m2/s 2 using a tidal gauge and good geometrical

leveling. The main contributions to this uncertainty are due to inaccuracies in the determination
of W and the SST. This limits the calculation of the second term in (4) at the level of

2 _ 3 × 10 -17 which is the limit for syntonization of clocks with respect to coordinate time

(TCG or TT) on the surface of the Earth.

Uncertainties in the potential model GEM-T3 (Lerch et al. 1992) and the determination of

the satellite orbit (5 cm seems a realistic value) limit the accuracy of syntonization of satellite

clocks at a few parts in 10 TM for low altitudes (semimajor axis < 15000 km). For higher altitudes
the effect of these uncertainties is below the 10 -ts level.

Therefore all terms necessary for the syntonization with respect to TCG of clocks on board

high altitude satellites (a > 15000 km) can be calculated to accuracies better than one part in
1()TM.

3. Transformation to TT

TCG is related to TT by a relativistic transformations, hence any clock that is syntonized

with respect to TCG can also be syntonized with respect to TT. In this case the accuracy

of syntonization may be limited by the uncertainty in the determination of the parameters

participating in the transformation.

The IAU defined TT as a geocentric coordinate time scale differing from TCG by a constant

rate, the scale unit of TT being chosen so that it agrees with the SI second on the geoid (IAU

1991). TT is an ideal form of the International Atomic Time TAI, apart from a constant offset.
It can be obtained from TCG via the transformation:
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dTT/dTCG = 1 - Lg (6)

with L9 = Wo/c 2 = 6.9692903 x lO 1° + 1 x 10 -17.

It follows that at present the accuracy of syntonization with respect to TT is limited at the

10 -17 level due to uncertainties in the determination of the potential on the geoid W0, even
for clocks on board terrestrial satellites.

This limit is inherent to the definition of TT and can therefore only be improved by a reduction

of the uncertainty in the determination of W0. If highly stable clocks on board terrestrial

satellites are to be used for the realization of TI" at accuracies exceeding this limit it might

prove necessary to change the definition. One possibility would be to turn L 9 into a defining
constant with a fixed value, which would at the same time provide a relativistic definition of

the geoid (Bjerhammar 1985, Soffel et al. 1988).

4. Time varying effects

For several applications of highly stable clocks, one is interested in the stability of the relative

rate between two clocks, and therefore only time varying effects need to be considered, which

can be calculated at the 10 -18 accuracy level even for clocks on the surface of the Earth. Table

II gives a summary of all such effects estimated to exceed the 10 -is limit.

Volcanic, coseismic, geodynamic and man-made (e.g. exploitation of oil, gas, geothermal fields)

effects are highly localized and only need to be taken into account at some particular locations.

Polar motion and tidal effects are of periodic nature with essentially diurnal and semi-diurnal

tidal periods, and the Chandler period (430 days) for the movement of the pole. If the clocks

in question are syntonized using repeated time transfers (see (3)) at picosecond accuracy, tidal

terms can be neglected as their short periods prevent their amplitudes in the time domain from

reaching one picosecond (Klioner 1992).

For atmospheric pressure variations of + 10 mbar on a global scale (corresponding to seasonal

changes), the effect on the rate of a clock on the Earth's surface can reach + 2 parts in 1018

with local pressure changes ((anti)cyclones with pressure variations of up to + 60 mbar) giving

rise to a correction of up to +2.7 x 10 -1_ (Rabbel and Zschau 1985).

5. Conclusion

We have presented a theory for the syntonization of clocks with respect to Geocentric Coordinate
Time (TCG) including all terms greater than 10-18 for clocks on board satellites at altitudes

exceeding 15000 km. For this purpose terms of order e -3 and e -a in the metric can be

neglected, which implies that the specification of coordinate conditions and the state of rotation

of the reference system is not necessary.

Syntonization with respect to Terrestiai Time (TT), an ideal form of TAI, is limited at the 10 -17

accuracy level due to the uncertainty in the determination of the potential on the geoid W0
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inherent to its definition.

For clockson the Earth's surfacesyntonizationwith respectto TCG or TT is limited at an
accuracyof 2 _ 3 × 10 -17 by uncertainties in the determination of the geopotential at the

location of the clock.

We briefly discussed time varying effects that may influence the stability of the relative rate of
two clocks. These can be calculated at the 10 -1_ accuracy level even for clocks on the Earth's

surface.

At present atomic clocks are approaching stabilities of the order 10 -1_ (Maleki 1993) with

further improvements expected in the near future. For comparisons of these highly stable

clocks over large distances, and their application in experimental relativity, geodesy, geophysics

etc.., a sufficiently accurate relativistic theory for their syntonization, like the one presented in

this paper, seems indispensable.

Together with a previous paper (Petit & Wolf 1994) the results obtained here amount to

a complete relativistic theory for the realization of a geocentric coordinate time scale at a

synchronization and syntonization accuracy of one picosecond and 10 -1_ respectively.
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Effect Order of magnitude Uncertainty

Earth's grav. pot.

Centrifugal pot.(v2 /2/c 2)

Volcanic and coseismic

(highly localised)

External masses (moon. sun)

Solid Earth tides

Ocean tides

7xlO-tO 10 "17

lxlO t2 < 10 Is

< 1016

1017 < l0 TM

10-l: < 10 -Is

10 -17 < 10 -Is

Table la: Effects on syntonization with respect to TUG of clocks on the Earth' s surface;

Orders of magnitude and uncertainties of the corrections.

Effect

Earth's gray. pot.

Order of magnitude

< 6x10 t°

Uncertainty

few 10 is (GEM-T3)

< 10_s at a> 10000 km

2nd order Doppler (tJ2/2/C 2)

External masses: Moon

(at a = 300000 km) Sun

Venus

Solid Earth tides "x

JOcean tides

Polar motion

Atmospheric pressure

< 3x10 -10

4x1013 _/_
4xlO -_a

6xlO Is

few 10_s (5 cm orbit

uncertainty)

< 10 18 at a> 15000 km

< 10 _s at a> 15000 km

<10-Is

10as <10 -Is

(at low altitudes)

Table lb: Effects on syntonization with respect to TCG of clocks on board terrestial satellites;

Orders of magnitude and uncertainties of the corrections.
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Effect Order of magnitude Uncertainty

Volcanic and coseismic

(highly localised)

Geodynamic and man-made

Oocalised and long-term > 1 year)

External masses (moon, sun)

Solid Earth tides

Ocean tides

Polar motion

(long-term - 430 days)

Atmospheric pressure

< 10 -16

< 10 -I_

]0 -17 < 10 -ls

10 -17 < lO "ls

10 17 < 10 Is

10 Is < 10 Is

10 -Is < lif TM

Table II: Time varying effects on the Earth' s surface for the determination of the relative

rate of two clocks; Orders of magnitude and uncertainties of the corrections.
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Fig. I: Present and expected clock stabilities (from Maleki (1993)).
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QUESTIONS AND ANSWERS

RICHARD KEATING (USNO): I just have a comment. I don't think that the kind of

presentation you just made is particularly useful. I think it's rather misleading. And I would

like to say that because about seven years ago, I fired up an old pendulum clock at the request

of a retired General Electric engineer. And if I had thought along the lines that you've just

presented, I would not have expected to see any effects from, say, a hmar potential. In fact,

the pendulum clock is highly sensitive. I could actually tell where the moon was, simply by the

effect on the pendulum clock.

These are not relativistic effects, true. But they are far more dramatic, much larger, and they

dominate the whole phenomena. So, just to concentrate solely on relativistic effects may be,

I think, highly misleading. So, to talk about 10 -ts, which is a tenth of ps per day, when

you actually in reality might have gravitational potential effects, which are the order of ms, I

really think you've got bigger problems to worry about. And I think that this kind of paper is

misleading.

PETER WOLF (BIPM): Okay, that's your opinion. Fine.

R.J. DOUGLAS (NATIONAL RESEARCH COUNCIL OF CANADA): I would like

to come to Peter's defense and say this is one of the most useful kinds of things, because it

tells where the limits are. It makes no sense to be thinking about designing optical frequency

standards that are going to be useful for time keeping, that are alleged to be possibly stable to

parts in 1020. Things that tell you where to stop the development tire very useful for systems

designers.

GERNOT M. WINKLER (USNO): I would raise the question about the semantics. You

are using "syntonization," I believe, in the sense of the ability to absolutely calculate frequency

differences. Because, you can always syntonize two standards to each other to see their signals.

But you cannot compute the actual frequency difference on an absolute basis.

So, I think there is maybe a need to refine our semantics a little bit.

PETER WOLF (BIPM): I completely agree, yes. There is a big semantic problem concerning

the word "syntonization." I have tried to consistently use it in two senses, "syntonization" of

two clocks, one relative to another; "syntonization" with respect to coordinate time, which is

tin entirely different thing.

There might also be several other problems. I do think there's a semantic problem there, but

that's only to be solved in time with people getting used to the different things going on.

HENRY FLIEGEL (AEROSPACE CORP.): I want to make one brief comment. I found

your paper very usefvl and interesting. As far as terminology is concerned, I have one brief

(almost theological) nit, and that is that I suppose the way to describe the gravitational series,

the harmonic expansion, is as very slowly convergent, rather than divergent.

PETER WOLF (BIPM): On the surface of the earth?

HENRY FLIEGEL (AEROSPACE CORP.): I believe so, because if it were divergent, that
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would mean that we ran eventually into a white noise regime.

PETER WOLF (BIPM): I have a paper which I can show you, which dates back to 1960,

which does theoretically prove to show that you cannot be certain that on any point on the

surface of the earth this vertical harmonic expansion will be convergent.

HENRY FLIEGEL (AEROSPACE CORP.): In that case, you have refuted all your critics.

I would like to see your paper.

PETER WOLF (BIPM): I'm afraid it's in German, Doctor.

HENRY FLIEGEL (AEROSPACE CORP.): Well, I read German, no problem.
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